## The challenge#

You are given the `length` and `width` of a 4-sided polygon. The polygon can either be a rectangle or a square.
If it is a square, return its area. If it is a rectangle, return its perimeter.

``````area_or_perimeter(6, 10) --> 32
area_or_perimeter(4, 4) --> 16
``````

Note: for the purposes of this challenge you will assume that it is a square if its `length` and `width` are equal, otherwise, it is a rectangle.

## The solution in Java#

Given that we know that:

The area of a square is: `l x h` and the area of a rectangle is `2(l+h)`, we can create the following code, differentiating on the if conditional statement that `l==w`, or, length is equal to width, which would mean a square, otherwise a rectangle:

``````public class Solution {
public static int areaOrPerimeter (int l, int w) {
if (l==w) {
//square
return l*w;
} else {
//rect
return (l+w)*2;
}
}
}
``````

We can simplify this as follows:

``````public class Solution {
public static int areaOrPerimeter (int l, int w) {
return (l==w) ? l*w : (l+w)*2;
}
}
``````

## Test cases to validate our code#

``````import org.junit.Test;
import static org.junit.Assert.assertEquals;
import org.junit.runners.JUnit4;
public class SolutionTest {
private static int X(int a , int b) {
return a == b ? a * b : 2 * ( a + b );
}
@Test
public void Tests() {
assertEquals(16, Solution.areaOrPerimeter(4 , 4));
assertEquals(32, Solution.areaOrPerimeter(6, 10), 32);
for(int i = 1; i < 101; i++) {
int a = (int)(Math. random() * (i + 50) + 1);
int b = (int)(Math. random() * (i + 30) + 21);
System.out.println("Testing for " + a + ", " + b);
assertEquals(X(a, b), Solution.areaOrPerimeter(a, b));
}
}
}
``````