Advanced Features

After building several production WebAssembly apps, I’ve discovered features that aren’t covered in basic tutorials but are essential for sophisticated applications. These techniques often make the difference between a demo and a production-ready system.

The advanced features I’ll share represent solutions to problems that only become apparent when you’re building complex, performance-critical applications.

Advanced Memory Management

WebAssembly gives you more control over memory than typical web applications. I’ve learned to take advantage of this for performance-critical code:

type MemoryPool struct {
    buffers chan []byte
    size    int
}

func NewMemoryPool(poolSize, bufferSize int) *MemoryPool {
    pool := &MemoryPool{
        buffers: make(chan []byte, poolSize),
        size:    bufferSize,
    }
    
    // Pre-allocate buffers
    for i := 0; i < poolSize; i++ {
        pool.buffers <- make([]byte, bufferSize)
    }
    
    return pool
}

func (mp *MemoryPool) Get() []byte {
    select {
    case buffer := <-mp.buffers:
        return buffer[:0] // Reset length but keep capacity
    default:
        return make([]byte, 0, mp.size) // Pool empty, create new
    }
}

func (mp *MemoryPool) Put(buffer []byte) {
    if cap(buffer) != mp.size {
        return // Wrong size, don't pool it
    }
    
    select {
    case mp.buffers <- buffer:
        // Successfully returned to pool
    default:
        // Pool full, let GC handle it
    }
}

This memory pooling reduces garbage collection pressure and provides more predictable performance.

Concurrency Patterns

Go’s goroutines work in WebAssembly, but they’re cooperative rather than preemptive. I’ve developed patterns that work well with this model:

type WorkerPool struct {
    jobs    chan Job
    results chan Result
    workers int
}

type Job struct {
    ID   string
    Data interface{}
}

type Result struct {
    JobID string
    Data  interface{}
    Error error
}

func NewWorkerPool(workers int) *WorkerPool {
    wp := &WorkerPool{
        jobs:    make(chan Job, 100),
        results: make(chan Result, 100),
        workers: workers,
    }
    
    // Start workers
    for i := 0; i < workers; i++ {
        go wp.worker()
    }
    
    return wp
}

func (wp *WorkerPool) worker() {
    for job := range wp.jobs {
        result := Result{JobID: job.ID}
        
        // Process job
        processed, err := processJob(job.Data)
        result.Data = processed
        result.Error = err
        
        wp.results <- result
    }
}

func (wp *WorkerPool) Submit(job Job) {
    wp.jobs <- job
}

func (wp *WorkerPool) GetResult() Result {
    return <-wp.results
}

This pattern provides controlled concurrency that works well in WebAssembly environments.

Data Processing Pipelines

For applications that process large amounts of data, I use pipeline patterns that maximize throughput:

type Pipeline struct {
    stages []Stage
}

type Stage func(<-chan interface{}) <-chan interface{}

func NewPipeline(stages ...Stage) *Pipeline {
    return &Pipeline{stages: stages}
}

func (p *Pipeline) Process(input <-chan interface{}) <-chan interface{} {
    current := input
    
    for _, stage := range p.stages {
        current = stage(current)
    }
    
    return current
}

// Example stages
func FilterStage(predicate func(interface{}) bool) Stage {
    return func(input <-chan interface{}) <-chan interface{} {
        output := make(chan interface{})
        
        go func() {
            defer close(output)
            for item := range input {
                if predicate(item) {
                    output <- item
                }
            }
        }()
        
        return output
    }
}

func TransformStage(transform func(interface{}) interface{}) Stage {
    return func(input <-chan interface{}) <-chan interface{} {
        output := make(chan interface{})
        
        go func() {
            defer close(output)
            for item := range input {
                output <- transform(item)
            }
        }()
        
        return output
    }
}

This pipeline approach processes data efficiently while keeping the main thread responsive.

Advanced JavaScript Integration

For complex applications, I create sophisticated integration layers that handle type conversion and error propagation automatically:

type APIRegistry struct {
    functions map[string]*APIFunction
}

type APIFunction struct {
    Handler    func([]interface{}) (interface{}, error)
    InputTypes []reflect.Type
    OutputType reflect.Type
}

func (ar *APIRegistry) Register(name string, fn interface{}) error {
    fnType := reflect.TypeOf(fn)
    if fnType.Kind() != reflect.Func {
        return fmt.Errorf("not a function")
    }
    
    // Extract input and output types
    var inputTypes []reflect.Type
    for i := 0; i < fnType.NumIn(); i++ {
        inputTypes = append(inputTypes, fnType.In(i))
    }
    
    var outputType reflect.Type
    if fnType.NumOut() > 0 {
        outputType = fnType.Out(0)
    }
    
    // Create wrapper
    handler := func(args []interface{}) (interface{}, error) {
        return ar.callFunction(fn, args)
    }
    
    ar.functions[name] = &APIFunction{
        Handler:    handler,
        InputTypes: inputTypes,
        OutputType: outputType,
    }
    
    return nil
}

func (ar *APIRegistry) callFunction(fn interface{}, args []interface{}) (interface{}, error) {
    fnValue := reflect.ValueOf(fn)
    
    // Convert arguments
    var callArgs []reflect.Value
    for _, arg := range args {
        callArgs = append(callArgs, reflect.ValueOf(arg))
    }
    
    // Call function
    results := fnValue.Call(callArgs)
    
    if len(results) == 0 {
        return nil, nil
    }
    
    return results[0].Interface(), nil
}

This registry automatically handles type conversion and provides a clean API for JavaScript integration.

Performance Monitoring

For production applications, I implement comprehensive performance monitoring:

type PerformanceMonitor struct {
    metrics map[string]*Metric
}

type Metric struct {
    Count    int64
    Total    time.Duration
    Min      time.Duration
    Max      time.Duration
    Average  time.Duration
}

func (pm *PerformanceMonitor) Time(name string, fn func()) {
    start := time.Now()
    fn()
    duration := time.Since(start)
    
    pm.recordMetric(name, duration)
}

func (pm *PerformanceMonitor) recordMetric(name string, duration time.Duration) {
    metric, exists := pm.metrics[name]
    if !exists {
        metric = &Metric{Min: duration, Max: duration}
        pm.metrics[name] = metric
    }
    
    metric.Count++
    metric.Total += duration
    metric.Average = metric.Total / time.Duration(metric.Count)
    
    if duration < metric.Min {
        metric.Min = duration
    }
    if duration > metric.Max {
        metric.Max = duration
    }
}

func (pm *PerformanceMonitor) GetReport() map[string]interface{} {
    report := make(map[string]interface{})
    
    for name, metric := range pm.metrics {
        report[name] = map[string]interface{}{
            "count":   metric.Count,
            "average": metric.Average.Milliseconds(),
            "min":     metric.Min.Milliseconds(),
            "max":     metric.Max.Milliseconds(),
        }
    }
    
    return report
}

This monitoring system provides detailed performance insights for optimization.

Advanced Error Recovery

Production applications need sophisticated error recovery mechanisms:

type ErrorRecovery struct {
    handlers map[reflect.Type]func(error) error
    fallback func(error) error
}

func (er *ErrorRecovery) RegisterHandler(errorType reflect.Type, handler func(error) error) {
    er.handlers[errorType] = handler
}

func (er *ErrorRecovery) Handle(err error) error {
    errorType := reflect.TypeOf(err)
    
    if handler, exists := er.handlers[errorType]; exists {
        return handler(err)
    }
    
    if er.fallback != nil {
        return er.fallback(err)
    }
    
    return err
}

func (er *ErrorRecovery) Recover(fn func() error) error {
    defer func() {
        if r := recover(); r != nil {
            var err error
            switch v := r.(type) {
            case error:
                err = v
            default:
                err = fmt.Errorf("panic: %v", v)
            }
            
            err = er.Handle(err)
            if err != nil {
                panic(err) // Re-panic if not handled
            }
        }
    }()
    
    return fn()
}

This system provides structured error recovery with type-specific handlers.

Module Composition

For large applications, I compose multiple WebAssembly modules that work together:

type ModuleManager struct {
    modules map[string]Module
}

type Module interface {
    Initialize() error
    GetAPI() map[string]interface{}
    Cleanup() error
}

func (mm *ModuleManager) LoadModule(name string, module Module) error {
    if err := module.Initialize(); err != nil {
        return err
    }
    
    mm.modules[name] = module
    
    // Expose module API to JavaScript
    api := module.GetAPI()
    for funcName, fn := range api {
        js.Global().Set(fmt.Sprintf("%s_%s", name, funcName), fn)
    }
    
    return nil
}

This approach allows you to build modular applications with clear separation of concerns.

These advanced features separate toy examples from production applications. They require more upfront complexity but enable capabilities that would be impossible with simpler approaches.

Real-world applications come next - complete examples that demonstrate how these advanced features work together to solve actual problems.