Model Registry

Centralizing model management:

Model Registry Functions:

  • Model versioning
  • Metadata storage
  • Artifact management
  • Lineage tracking
  • Deployment management
  • Approval workflows

Example Model Registry Implementation:

# MLflow Model Registry example
import mlflow
from mlflow.tracking import MlflowClient

# Initialize client
client = MlflowClient()

# Register model from run
run_id = "abcdef123456"
model_uri = f"runs:/{run_id}/model"
model_name = "customer_churn_predictor"

# Register model in registry
model_details = mlflow.register_model(model_uri, model_name)
model_version = model_details.version

# Add model description
client.update_model_version(
    name=model_name,
    version=model_version,
    description="Random Forest model trained on customer data from Q1 2025"
)

# Add model tags
client.set_model_version_tag(
    name=model_name,
    version=model_version,
    key="data_version",
    value="v2.1"
)

# Transition model to staging
client.transition_model_version_stage(
    name=model_name,
    version=model_version,
    stage="Staging"
)

# After validation, transition to production
client.transition_model_version_stage(
    name=model_name,
    version=model_version,
    stage="Production"
)

Model Registry Best Practices:

  • Implement model approval workflows
  • Track model lineage and dependencies
  • Store model performance metrics
  • Link models to training data
  • Document model limitations
  • Implement access controls

ML Platforms

Unified environments for ML development and deployment:

ML Platform Components:

  • Notebook environments
  • Training infrastructure
  • Feature stores
  • Model registries
  • Deployment services
  • Monitoring tools

Popular ML Platforms:

  • Kubeflow
  • MLflow
  • SageMaker
  • Vertex AI
  • Azure ML
  • Databricks

ML Platform Selection Criteria:

  • Scalability requirements
  • Integration with existing tools
  • Support for preferred frameworks
  • Governance capabilities
  • Cost considerations
  • Team expertise

ML Governance and Compliance

Model Governance

Ensuring responsible ML practices:

Model Governance Components:

  • Model documentation
  • Explainability methods
  • Bias detection and mitigation
  • Compliance validation
  • Audit trails
  • Risk assessment

Example Model Card:

# Model Card: Customer Churn Prediction

## Model Details
- **Model Name**: customer_churn_predictor_v2
- **Version**: 2.0.0
- **Type**: Random Forest Classifier
- **Framework**: scikit-learn 1.2.0