MLOps Fundamentals

The ML Lifecycle

Understanding the end-to-end machine learning process:

ML Lifecycle Stages:

  • Problem definition and scoping
  • Data collection and preparation
  • Feature engineering and selection
  • Model development and training
  • Model evaluation and validation
  • Model deployment and serving
  • Monitoring and maintenance
  • Continuous improvement

MLOps vs. Traditional DevOps:

  • Data and model versioning (not just code)
  • Experiment tracking and reproducibility
  • Model-specific testing requirements
  • Specialized deployment patterns
  • Performance monitoring beyond uptime
  • Retraining workflows

MLOps Maturity Levels:

  • Level 0: Manual process, no automation
  • Level 1: ML pipeline automation, CI/CD
  • Level 2: Automated retraining pipeline
  • Level 3: Full automation with governance

Example MLOps Workflow:

┌───────────────┐     ┌───────────────┐     ┌───────────────┐
│               │     │               │     │               │
│  Data         │────▶│  Model        │────▶│  Model        │
│  Pipeline     │     │  Development  │     │  Deployment   │
│               │     │               │     │               │
└───────┬───────┘     └───────┬───────┘     └───────┬───────┘
        │                     │                     │
        │                     │                     │
        ▼                     ▼                     ▼
┌───────────────┐     ┌───────────────┐     ┌───────────────┐
│               │     │               │     │               │
│  Feature      │     │  Experiment   │     │  Model        │
│  Store        │     │  Tracking     │     │  Registry     │
│               │     │               │     │               │
└───────────────┘     └───────────────┘     └───────┬───────┘
                                                    │
                                                    │
                                                    ▼
┌───────────────┐     ┌───────────────┐     ┌───────────────┐
│               │     │               │     │               │
│  Model        │◀────│  Model        │◀────│  Model        │
│  Retraining   │     │  Monitoring   │     │  Serving      │
│               │     │               │     │               │
└───────────────┘     └───────────────┘     └───────────────┘

Cross-Functional Collaboration

Bridging the gap between data science and engineering:

Key Roles in MLOps:

  • Data Scientists
  • ML Engineers
  • DevOps Engineers
  • Data Engineers
  • Platform Engineers
  • Product Managers

Collaboration Challenges:

  • Different toolsets and workflows
  • Knowledge gaps between disciplines
  • Handoff friction between teams
  • Conflicting priorities and timelines
  • Shared responsibility boundaries

Collaboration Best Practices:

  • Establish common terminology
  • Define clear handoff processes
  • Create shared documentation
  • Implement collaborative tools
  • Conduct cross-training sessions
  • Form cross-functional teams

Model Development and Training

Experiment Management

Tracking and organizing ML experiments:

Experiment Tracking Components:

  • Code versioning
  • Data versioning
  • Parameter tracking
  • Metrics logging
  • Artifact management
  • Environment capture

Example MLflow Tracking:

# MLflow experiment tracking example
import mlflow
import mlflow.sklearn
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score

# Set experiment
mlflow.set_experiment("customer_churn_prediction")

# Start run
with mlflow.start_run(run_name="random_forest_baseline"):
    # Log parameters
    params = {
        "n_estimators": 100,
        "max_depth": 10,
        "min_samples_split": 5,
        "random_state": 42
    }
    mlflow.log_params(params)
    
    # Train model
    model = RandomForestClassifier(**params)
    model.fit(X_train, y_train)
    
    # Make predictions
    y_pred = model.predict(X_test)
    
    # Log metrics
    metrics = {
        "accuracy": accuracy_score(y_test, y_pred),
        "precision": precision_score(y_test, y_pred),
        "recall": recall_score(y_test, y_pred),
        "f1": f1_score(y_test, y_pred)
    }
    mlflow.log_metrics(metrics)
    
    # Log model
    mlflow.sklearn.log_model(model, "random_forest_model")

Experiment Management Tools:

  • MLflow
  • Weights & Biases
  • Neptune.ai
  • Comet.ml
  • DVC (Data Version Control)

Experiment Management Best Practices:

  • Track all experiments, even failed ones
  • Use consistent naming conventions
  • Tag experiments for easy filtering
  • Compare experiments systematically
  • Link experiments to requirements
  • Document findings and insights