MLOps Fundamentals
The ML Lifecycle
Understanding the end-to-end machine learning process:
ML Lifecycle Stages:
- Problem definition and scoping
- Data collection and preparation
- Feature engineering and selection
- Model development and training
- Model evaluation and validation
- Model deployment and serving
- Monitoring and maintenance
- Continuous improvement
MLOps vs. Traditional DevOps:
- Data and model versioning (not just code)
- Experiment tracking and reproducibility
- Model-specific testing requirements
- Specialized deployment patterns
- Performance monitoring beyond uptime
- Retraining workflows
MLOps Maturity Levels:
- Level 0: Manual process, no automation
- Level 1: ML pipeline automation, CI/CD
- Level 2: Automated retraining pipeline
- Level 3: Full automation with governance
Example MLOps Workflow:
┌───────────────┐ ┌───────────────┐ ┌───────────────┐
│ │ │ │ │ │
│ Data │────▶│ Model │────▶│ Model │
│ Pipeline │ │ Development │ │ Deployment │
│ │ │ │ │ │
└───────┬───────┘ └───────┬───────┘ └───────┬───────┘
│ │ │
│ │ │
▼ ▼ ▼
┌───────────────┐ ┌───────────────┐ ┌───────────────┐
│ │ │ │ │ │
│ Feature │ │ Experiment │ │ Model │
│ Store │ │ Tracking │ │ Registry │
│ │ │ │ │ │
└───────────────┘ └───────────────┘ └───────┬───────┘
│
│
▼
┌───────────────┐ ┌───────────────┐ ┌───────────────┐
│ │ │ │ │ │
│ Model │◀────│ Model │◀────│ Model │
│ Retraining │ │ Monitoring │ │ Serving │
│ │ │ │ │ │
└───────────────┘ └───────────────┘ └───────────────┘
Cross-Functional Collaboration
Bridging the gap between data science and engineering:
Key Roles in MLOps:
- Data Scientists
- ML Engineers
- DevOps Engineers
- Data Engineers
- Platform Engineers
- Product Managers
Collaboration Challenges:
- Different toolsets and workflows
- Knowledge gaps between disciplines
- Handoff friction between teams
- Conflicting priorities and timelines
- Shared responsibility boundaries
Collaboration Best Practices:
- Establish common terminology
- Define clear handoff processes
- Create shared documentation
- Implement collaborative tools
- Conduct cross-training sessions
- Form cross-functional teams
Model Development and Training
Experiment Management
Tracking and organizing ML experiments:
Experiment Tracking Components:
- Code versioning
- Data versioning
- Parameter tracking
- Metrics logging
- Artifact management
- Environment capture
Example MLflow Tracking:
# MLflow experiment tracking example
import mlflow
import mlflow.sklearn
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
# Set experiment
mlflow.set_experiment("customer_churn_prediction")
# Start run
with mlflow.start_run(run_name="random_forest_baseline"):
# Log parameters
params = {
"n_estimators": 100,
"max_depth": 10,
"min_samples_split": 5,
"random_state": 42
}
mlflow.log_params(params)
# Train model
model = RandomForestClassifier(**params)
model.fit(X_train, y_train)
# Make predictions
y_pred = model.predict(X_test)
# Log metrics
metrics = {
"accuracy": accuracy_score(y_test, y_pred),
"precision": precision_score(y_test, y_pred),
"recall": recall_score(y_test, y_pred),
"f1": f1_score(y_test, y_pred)
}
mlflow.log_metrics(metrics)
# Log model
mlflow.sklearn.log_model(model, "random_forest_model")
Experiment Management Tools:
- MLflow
- Weights & Biases
- Neptune.ai
- Comet.ml
- DVC (Data Version Control)
Experiment Management Best Practices:
- Track all experiments, even failed ones
- Use consistent naming conventions
- Tag experiments for easy filtering
- Compare experiments systematically
- Link experiments to requirements
- Document findings and insights