OpenTelemetry Integration
Implementing the open standard for observability:
OpenTelemetry Components:
- API: Instrumentation interfaces
- SDK: Implementation and configuration
- Collector: Data processing and export
- Instrumentation: Language-specific libraries
- Semantic Conventions: Standardized naming
Example OpenTelemetry Collector Configuration:
# OpenTelemetry Collector configuration
receivers:
otlp:
protocols:
grpc:
endpoint: 0.0.0.0:4317
http:
endpoint: 0.0.0.0:4318
processors:
batch:
timeout: 1s
send_batch_size: 1024
# Add service name to all telemetry if missing
resource:
attributes:
- key: service.name
value: "unknown-service"
action: insert
# Filter out health check endpoints
filter:
spans:
exclude:
match_type: regexp
attributes:
- key: http.url
value: ".*/health$"
exporters:
prometheus:
endpoint: 0.0.0.0:8889
namespace: otel
elasticsearch:
endpoints: ["https://elasticsearch:9200"]
index: logs-%{service.name}-%{+YYYY.MM.dd}
jaeger:
endpoint: jaeger-collector:14250
tls:
insecure: true
service:
pipelines:
traces:
receivers: [otlp]
processors: [batch, resource, filter]
exporters: [jaeger]
metrics:
receivers: [otlp]
processors: [batch, resource]
exporters: [prometheus]
logs:
receivers: [otlp]
processors: [batch, resource]
exporters: [elasticsearch]
OpenTelemetry Deployment Models:
- Agent: Sidecar container or host agent
- Gateway: Centralized collector per cluster/region
- Hierarchical: Multiple collection layers
- Direct Export: Services export directly to backends
- Hybrid: Combination based on requirements
Service Mesh Observability
Leveraging service mesh for enhanced visibility:
Service Mesh Monitoring Features:
- Automatic metrics collection
- Distributed tracing integration
- Traffic visualization
- Protocol-aware monitoring
- Zero-code instrumentation
Example Istio Telemetry Configuration:
# Istio telemetry configuration
apiVersion: telemetry.istio.io/v1alpha1
kind: Telemetry
metadata:
name: mesh-default
namespace: istio-system
spec:
# Configure metrics
metrics:
- providers:
- name: prometheus
overrides:
- match:
metric: REQUEST_COUNT
mode: CLIENT_AND_SERVER
disabled: false
- match:
metric: REQUEST_DURATION
mode: CLIENT_AND_SERVER
disabled: false
# Configure access logs
accessLogging:
- providers:
- name: envoy
filter:
expression: "response.code >= 400"
# Configure tracing
tracing:
- providers:
- name: zipkin
randomSamplingPercentage: 10.0
Service Mesh Observability Benefits:
- Consistent telemetry across services
- Protocol-aware metrics (HTTP, gRPC, TCP)
- Automatic dependency mapping
- Reduced instrumentation burden
- Enhanced security visibility
Monitoring Infrastructure
Metrics Collection and Storage
Systems for gathering and storing time-series data:
Metrics Collection Approaches:
- Pull-based collection (Prometheus)
- Push-based collection (StatsD, OpenTelemetry)
- Agent-based collection (Telegraf, collectd)
- Cloud provider metrics (CloudWatch, Stackdriver)
- Hybrid approaches
Time-Series Databases:
- Prometheus
- InfluxDB
- TimescaleDB
- Graphite
- VictoriaMetrics
Example Prometheus Configuration:
# Prometheus configuration for Kubernetes service discovery
global:
scrape_interval: 15s
evaluation_interval: 15s
scrape_configs:
- job_name: 'kubernetes-pods'
kubernetes_sd_configs:
- role: pod
relabel_configs:
- source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape]
action: keep
regex: true
- source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_path]
action: replace
target_label: __metrics_path__
regex: (.+)
- source_labels: [__address__, __meta_kubernetes_pod_annotation_prometheus_io_port]
action: replace
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $1:$2
target_label: __address__
- action: labelmap
regex: __meta_kubernetes_pod_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
action: replace
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_pod_name]
action: replace
target_label: kubernetes_pod_name
Metrics Storage Considerations:
- Retention period requirements
- Query performance needs
- Cardinality management
- High availability setup
- Long-term storage strategies
Log Management
Collecting, processing, and analyzing log data:
Log Collection Methods:
- Sidecar containers (Fluentbit, Filebeat)
- Node-level agents (Fluentd, Vector)
- Direct application shipping
- Log forwarders
- API-based collection
Example Fluentd Configuration:
# Fluentd configuration for Kubernetes logs
<source>
@type tail
path /var/log/containers/*.log
pos_file /var/log/fluentd-containers.log.pos
tag kubernetes.*
read_from_head true
<parse>
@type json
time_format %Y-%m-%dT%H:%M:%S.%NZ
</parse>
</source>
# Kubernetes metadata enrichment
<filter kubernetes.**>
@type kubernetes_metadata
kubernetes_url https://kubernetes.default.svc
bearer_token_file /var/run/secrets/kubernetes.io/serviceaccount/token
ca_file /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
</filter>
# Output to Elasticsearch
<match kubernetes.**>
@type elasticsearch
host elasticsearch
port 9200
logstash_format true
logstash_prefix k8s-logs
</match>
Log Processing and Analysis:
- Structured logging formats
- Log parsing and enrichment
- Log aggregation and correlation
- Full-text search capabilities
- Log retention and archiving
Distributed Tracing
Tracking requests across service boundaries:
Tracing System Components:
- Instrumentation libraries
- Trace context propagation
- Sampling strategies
- Trace collection and storage
- Visualization and analysis
Sampling Strategies:
- Head-based sampling (before trace starts)
- Tail-based sampling (after trace completes)
- Rate-limiting sampling
- Probabilistic sampling
- Dynamic and adaptive sampling