6. Leverage Reserved Capacity and Savings Plans
For predictable workloads, reserved capacity offerings can provide significant savings.
Implementation Steps:
-
Analyze usage patterns
- Identify stable, predictable workloads
- Determine appropriate commitment periods
- Calculate potential savings
-
Implement reservation strategy
- Start with high-confidence resources
- Consider flexible reservation types
- Implement a phased approach
-
Monitor and optimize
- Track reservation utilization
- Modify reservations as needs change
- Implement automated recommendations
AWS Implementation Example:
# Get Savings Plans recommendations
aws ce get-savings-plans-purchase-recommendation \
--term "ONE_YEAR" \
--payment-option "ALL_UPFRONT" \
--lookback-period "SIXTY_DAYS"
# Purchase a Savings Plan
aws savingsplans create-savings-plan \
--savings-plan-offering-id "offering-12345678" \
--commitment "1000.0" \
--upfront-payment-amount "12000.0" \
--term "ONE_YEAR" \
--payment-option "ALL_UPFRONT"
Azure Implementation Example:
# Get Reserved Instance recommendations
az reservations recommendation list \
--subscription-id "00000000-0000-0000-0000-000000000000" \
--look-back-period "Last7Days" \
--instance-flexibility "Standard"
# Purchase a Reserved Instance
az reservations reservation create \
--reservation-order-id "00000000-0000-0000-0000-000000000000" \
--reservation-id "00000000-0000-0000-0000-000000000000" \
--sku-name "Standard_D2s_v3" \
--location "eastus" \
--quantity 10 \
--billing-scope "/subscriptions/00000000-0000-0000-0000-000000000000" \
--term "P1Y" \
--billing-plan "Upfront"
Advanced Monitoring Strategies for Continuous Optimization
To achieve sustained cost optimization, implement these advanced monitoring strategies:
1. Anomaly Detection and Alerting
Implement systems to detect unusual spending patterns and alert appropriate stakeholders.
Implementation Example:
# Python script for AWS cost anomaly detection
import boto3
import datetime
import json
ce = boto3.client('ce')
sns = boto3.client('sns')
# Get cost for the last 7 days
end_date = datetime.datetime.now().strftime('%Y-%m-%d')
start_date = (datetime.datetime.now() - datetime.timedelta(days=7)).strftime('%Y-%m-%d')
response = ce.get_cost_and_usage(
TimePeriod={
'Start': start_date,
'End': end_date
},
Granularity='DAILY',
Metrics=['UnblendedCost'],
GroupBy=[
{
'Type': 'DIMENSION',
'Key': 'SERVICE'
}
]
)
# Process results and detect anomalies
for result in response['ResultsByTime']:
date = result['TimePeriod']['Start']
for group in result['Groups']:
service = group['Keys'][0]
cost = float(group['Metrics']['UnblendedCost']['Amount'])
# Simple anomaly detection - alert if cost is 50% higher than average
# In production, use more sophisticated algorithms
if cost > 1.5 * average_cost_for_service(service):
alert_message = f"Cost anomaly detected for {service} on {date}: ${cost:.2f}"
# Send alert
sns.publish(
TopicArn='arn:aws:sns:us-east-1:123456789012:CostAlerts',
Message=alert_message,
Subject='Cloud Cost Anomaly Detected'
)
2. Unit Economics Monitoring
Track costs relative to business metrics to ensure cloud spending scales appropriately with business value.
Implementation Steps:
-
Define business metrics
- Transactions processed
- Active users
- Revenue generated
-
Implement cost allocation
- Tag resources by business unit/product
- Allocate shared costs appropriately
-
Create unit economics dashboards
- Cost per transaction
- Cost per user
- Cost as percentage of revenue
Example Dashboard Metrics:
# Example metrics for an e-commerce platform
Daily Active Users (DAU): 50,000
Total Daily Cloud Cost: $1,200
Cost per DAU: $0.024
Orders Processed: 5,000
Cost per Order: $0.24
Revenue Generated: $250,000
Cloud Cost as % of Revenue: 0.48%
3. Automated Optimization Workflows
Implement automated workflows that continuously optimize cloud resources based on monitoring data.
AWS Implementation Example:
# AWS Step Functions workflow for automated optimization
{
"Comment": "Automated Cost Optimization Workflow",
"StartAt": "CollectUtilizationData",
"States": {
"CollectUtilizationData": {
"Type": "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:CollectUtilizationData",
"Next": "AnalyzeUtilization"
},
"AnalyzeUtilization": {
"Type": "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:AnalyzeUtilization",
"Next": "GenerateRecommendations"
},
"GenerateRecommendations": {
"Type": "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:GenerateRecommendations",
"Next": "ApprovalRequired"
},
"ApprovalRequired": {
"Type": "Choice",
"Choices": [
{
"Variable": "$.requiresApproval",
"BooleanEquals": true,
"Next": "RequestApproval"
},
{
"Variable": "$.requiresApproval",
"BooleanEquals": false,
"Next": "ImplementChanges"
}
]
},
"RequestApproval": {
"Type": "Task",
"Resource": "arn:aws:states:::lambda:invoke.waitForTaskToken",
"Parameters": {
"FunctionName": "arn:aws:lambda:us-east-1:123456789012:function:RequestApproval",
"Payload": {
"recommendations.$": "$.recommendations",
"taskToken.$": "$$.Task.Token"
}
},
"Next": "ApprovalDecision"
},
"ApprovalDecision": {
"Type": "Choice",
"Choices": [
{
"Variable": "$.approved",
"BooleanEquals": true,
"Next": "ImplementChanges"
},
{
"Variable": "$.approved",
"BooleanEquals": false,
"Next": "DocumentDecision"
}
]
},
"ImplementChanges": {
"Type": "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:ImplementChanges",
"Next": "DocumentChanges"
},
"DocumentChanges": {
"Type": "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:DocumentChanges",
"End": true
},
"DocumentDecision": {
"Type": "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:DocumentDecision",
"End": true
}
}
}