Get The Shortest Path in Binary Matrix using Python
The challenge
In an N by N square grid, each cell is either empty (0) or blocked (1).
A clear path from top-left to bottom-right has length k if and only if it is composed of cells C_1, C_2, ..., C_k such that:
- Adjacent cells
C_iandC_{i+1}are connected 8-directionally (ie., they are different and share an edge or corner) C_1is at location(0, 0)(ie. has valuegrid[0][0])C_kis at location(N-1, N-1)(ie. has valuegrid[N-1][N-1])- If
C_iis located at(r, c), thengrid[r][c]is empty (ie.grid[r][c] == 0).
Return the length of the shortest such clear path from top-left to bottom-right. If such a path does not exist, return -1.
Example 1:
Input:
[[0,1],[1,0]]

Output: 2

Example 2:
Input:
[[0,0,0],[1,1,0],[1,1,0]]

Output: 4

Note:
1 <= grid.length == grid[0].length <= 100grid[r][c]is `` or1
The solution
def shortestPathBinaryMatrix(self, grid: List[List[int]]) -> int:
"""
:type grid: List[List[int]]
:rtype: int
"""
if grid[0][0] != 0:
return -1
q = [[0, 0, 1]]
grid[0][0] = 1
while len(q) != 0:
# print(q)
k, m, d = q.pop(0)
# grid[k][m] = 1
if k == m == len(grid) - 1:
return d
# UP
if k - 1 >= 0 and grid[k - 1][m] == 0:
q.append([k - 1, m, d + 1])
grid[k-1][m] = 1
# DOWN
if k + 1 < len(grid) and grid[k + 1][m] == 0:
q.append([k + 1, m, d + 1])
grid[k+1][m] = 1
# LEFT
if m - 1 >= 0 and grid[k][m - 1] == 0:
q.append([k, m - 1, d + 1])
grid[k][m-1] = 1
# RIGHT
if m + 1 < len(grid[0]) and grid[k][m + 1] == 0:
q.append([k, m + 1, d + 1])
grid[k][m+1] = 1
# TOP LEFT
if k - 1 >= 0 and m - 1 >= 0 and grid[k - 1][m - 1] == 0:
q.append([k - 1, m - 1, d + 1])
grid[k-1][m-1] = 1
# TOP RIGHT
if k - 1 >= 0 and m + 1 < len(grid[0]) and grid[k - 1][m + 1] == 0:
q.append([k - 1, m + 1, d + 1])
grid[k-1][m+1] = 1
# BOTTOM LEFT
if k + 1 < len(grid) and m - 1 >= 0 and grid[k + 1][m - 1] == 0:
q.append([k + 1, m - 1, d + 1])
grid[k+1][m-1] = 1
# BOTTOM RIGHT
if k + 1 < len(grid) and m + 1 < len(grid[0]) and grid[k + 1][m + 1] == 0:
q.append([k + 1, m + 1, d + 1])
grid[k+1][m+1] = 1
return -1